MPSS: A Multi-agents Based P2P-SIP Real Time Stream Sharing System

Journal Club 2007-08 Session 1 Victor Pascual Ávila victor.pascuala@upf.edu Feb, 8th 2008

Universitat Pompeu Fabra (UPF)

Network Technologies and Strategies

Article Reference

Title: MPSS: A Multi-agents Based P2P-SIP Real Time Stream Sharing System

Author: Yang, D. Wang, H. Wang, C. Gao, Y.

Journal title: LECTURE NOTES IN COMPUTER SCIENCE

Bibliographic details: 2006, NUMB 4088, pages 398-408

Publisher: SPRINGER-VERLAG

Country of publication: Germany

ISBN: ISSN 0302-9743

Outline

- Introduction
- Background and Related Work
- MPSS System Design
- The Multi-Agents Design
- Results and Analysis
- Conclusion and Future Work
- Comments

Introduction

• P2P

- scalability, robustness and fault tolerance
- unstructured (mesh) vs structured (overlay, Chord)
- ordinary P2P not suitable for real time applications
 - not optimal pieces selection
 - throughout limitation to prevent free-riders
 - peer bw utilization rate is reduced
- Les Trois Mousquetaires: "Loss, Delay and Jitter"
- SIP
 - Signaling protocol for **real time** communications
 - IETF Family, Client-Server architecture (not scalable)
- P2P and SIP for real time streaming media (NOT live streaming)
 - i.e. pre-stored content

Background and Related Work

- P2P and SIP
 - SIP: initiation, modification and termination of sessions
 - SIP + SIMPLE extensions for presence and IM
 - It makes use of SIP + SIMPLE + DHT
- Distributed Hash Table (DHT) Systems: Chord
 - Ring-type structure
 - Every Node is responsible for **storing** all resources that have Resource-ID near the node's Node-ID
 - Search: send messages to the known node that is closest to the destination address (recursive **routing**)
- Real-Time Media Streaming Transport
 - the system should guarantee every peer can get the needed media file time

MPSS System Design

- Node Structure
 - Chord-based DHT
 - All messages are SIP(new headers) + SDP(media file information)
 - REGISTER to maintain the overlay
 - INVITE(+SDP) to request information and media pieces
- File Publishing and Pieces Distribution
 - Publishing by hashing (ID) file information
 - ID-responsible receives queries from all downloaders and give them back a list of peers
 - A receiver can download blocks within the same piece within the same file from multiple peers simultaneously
- Peer Strategy and Piece Selection: choose the appropriate piece from the appropriate peer
 - establish socket connections with several peers considering measured value parameter p=f(delay,available bw)
 - determine which pieces to download from which peers
 OTS: optimized media data assignement algorithm

The Multi-agents Design

- More peers who attend the same file, more availability
- Instant '0' -> bottleneck
 - every node requests file pieces from the seed peer
- Agent servers mechanism (Caching)
 - special peers which take the policy of 'rarest resource first'
 - download & store
 - replacing parameter Q= f(extinguity extent, popularity)

Simulations, Results and Analysis

- Contrast (bw utilization) with the pure BitTorrent
 - 3 different networks, i.e. 3 degrees of heterogeneity (up/down link)

Group	Uplink Bandwidth	Downlink bandwidth	Percentage of nodes
1.1	384Kbps	1500 Kbps	100%
2.1	128Kbps	$768 \mathrm{Kbps}$	50%
2.2	640Kbps	2232Kpbs	50%
3.1	64Kbps	512 Kbps	50%
3.2	384Kbps	1500 Kbps	40%
3.3	$1984 \mathrm{Kbps}$	6440Kbps	10%

- Verify the the validity piece selection in the decrease media transport latency time
- Contrast the result with media proxy and non-media proxy

Overall throughout of MPSS is higher than that of BitTorrent

Figure: Overall throughout ratio change between BitTorrent and MPSS with the number of node changing in three different Networks

OTS algorithm can compute an optimal media assignment, minimum buffering delay

Figure: Different influence brought by the piece selection

The rate of file integrity is lower without proxy server

time(s)

Figure: The file integrity rate under the situation of with proxy server and without proxy server

With the proxy server number increasing, the media buffering time is decreased

the number of proxy server

Authors Conclusions

- Combine SIP with Self Organizing properties of DHT P2P mechanism
- OTS media assignment algorithm and advanced peer selection mechanism
- Media agent server mechanism: fast capacity amplification and seed related risk reduction
- MPSS does meet the needs for the distributed realtime media communication
- Open issues: Recover the original file and Fairness

Comments (IMHO)

- This is NOT live streaming: pre-stored content
- It is just an enhanced file sharing system
- File sharing and streaming have different requirements
- SIMPLE is NOT used
- Only Peers (neither Clients nor Consumers)
- May Multi-agents be considered to act as Client nodes?
- (Mobile) Device constraints vs Local decission algorithm
- Let's write a paper!

MPSS: A Multi-agents Based P2P-SIP Real Time Stream Sharing System

Journal Club 2007-08 Session 1 Victor Pascual Ávila victor.pascuala@upf.edu Feb, 8th 2008

Universitat Pompeu Fabra (UPF)

Network Technologies and Strategies