Ad Hoc Wireless Network Traffic Self-similarity and Forecasting

Wireless Seminars

Cristina Cano

7th of January 2007 Pompeu Fabra University (UPF)

Article Reference

Qilian Liang

Ad hoc wireless network traffic-self-similarity and forecasting

IEEE Communications Letters Vol. 6 No 7

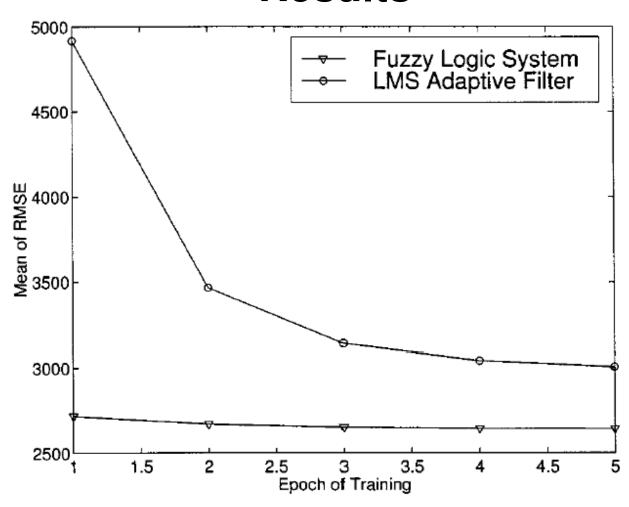
Pages 297 – 299 July 2002

Introduction

- Ad Hoc Wireless Networks
- Traffic load forecast
 - Find traffic patterns
 - Predictors
- Evaluate network capacity
- Determine battery power mode

Traffic Pattern

- Assume self-similarity:
 - Similar statistical structure in a wide range of time scales
 - High variability
- Assume long-range dependence (LRD)
 - Memory
 - High autocorrelation
- → Forecastable



Prediction

- Apply a Fuzzy Logic System
 - 16 rules
 - Based on the 500 first units (training)
 - 4 antecedents used for forecasting
- Evaluation based on the RMSE
- Comparison with an LMS adaptive filter

Results

Conclusions

- Traffic load could be forecasted
- Accurate results
- Possibility of real-time prediction
- Self-similarity → Big assumption
 - Star Wars MPEG video: self-similar per se

Apply this ideas to WSN...

- Environmental monitoring
 - Find self-similar patterns
 - Self-similarity has been observed in physics but also in biology and even psychology and sociology
- Information forecast in sensor and sink
- Reduction of messages to send
- Energy saving

Ad Hoc Wireless Network Traffic Self-similarity and Forecasting

Wireless Seminars

Cristina Cano

7th of January 2007 Pompeu Fabra University (UPF)

